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Abstract—The proliferation of the Internet of Things (IoT) and Artificial Intelligence (AI) has
transformed traditional consumer electronics (CEs) into next-generation devices with enhanced
intelligence and connectivity. However, this advancement has exposed CEs to cybersecurity threats
such as IoT botnets. Consequently, researchers are employing AI for proactive threat detection and
prevention. Unfortunately, AI algorithms are vulnerable to adversarial attacks, necessitating
robustness studies, as evaded malware can cause significant damage to already susceptible IoT CEs.
This paper presents a case study to evaluate the resilience of AI-based IoT malware detection systems
against adversarial attacks. Specifically, our method involves inserting crafted binary code snippets
(payloads) into the empty regions of malware executables. We leverage explainable AI (XAI)
techniques to guide payload generation, coupled with an optimization procedure to efficiently identify
optimal payload sequences. Our method, tested on real-world IoT datasets, yields a robust hybrid
detection system with a detection rate of up to 99.11%. Our attack approach achieves evasion rates of
up to 100% and generates transferable adversarial examples. The generated samples evade a
prominent structural IoT malware detector with an evasion rate of 95.15% at a minimal attack cost. This
study underscores the importance of enhancing the robustness of AI-based malware detection
systems and implementing diverse strategies to safeguard consumer IoT devices.
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Adversarial Attacks on Consumer Electronics

(CEs), revolutionizing how we interact with devices
and enhancing our daily lives. From smart home assis-
tants that manage our schedules and control household
appliances to wearable fitness trackers that monitor
our health in real time, IoT-enabled CEs have become
integral components of modern living [1]. However,
with this increased connectivity comes heightened
cybersecurity concerns [2]. As these devices collect
and exchange vast amounts of personal data, there is a
growing need for robust cybersecurity measures to pro-
tect against potential threats such as IoT botnets [2]–
[4]. Cybersecurity researchers employ AI for proactive
threat detection and prevention [5], analyzing both
benign and malicious files to extract features for train-
ing machine learning (ML) malware detectors. File
executables can be represented as binary sequences [6],
grayscale images [7], or analyzed for semantic and
structural features. Structure-based features, such as
Control Flow Graph (CFG) [8], [9] and Function
Call Graph (FCG) [10], [11], have gained traction in
IoT malware detection due to their ability to detect
malware across diverse CPU architectures

Machine learning malware detectors are particu-
larly vulnerable to adversarial attacks, where subtle
perturbations to malware samples are designed to
mislead the detector during training (poisoning at-
tacks) [12] or induce misclassification of malware as
benign during testing [3], [13], [14]. These vulnerabil-
ities necessitate robustness studies of ML detectors,
as undetected malware can cause substantial harm.
Unlike in image classification [15], adversarial attacks
in malware detection must preserve the original ma-
licious functionality [3], making such attacks more
challenging.

Numerous studies exist on adversarial attacks
on malware detection, primarily focusing on An-
droid [16]–[18] and Windows [19]–[21] malware de-
tection. However, only a few of these studies focus on
IoT malware detection [3], [14], and most are limited
to code-level attacks, which may not be practical.
To address this gap, we aim to conduct a novel
binary-level adversarial attack on structure-based IoT
malware detection by injecting benign payloads into
existing empty spaces in the binary. Our approach
targets structural IoT malware detection, as existing
literature [8], [10], [11], [22], [23] demonstrates that
most IoT detectors rely on structural features. Unlike
opcode or byte sequences, high-level graphical features

such as FCGs and CFGs are architecture-independent,
making them particularly effective for detecting cross-
architecture malware in IoT devices, as demonstrated
by [11].

This study evaluates the resilience of machine-
learning malware detectors used in consumer electron-
ics and IoT devices against adversarial attacks. We
disassemble IoT binaries, construct control flow graphs
(CFGs), and extract features for training detectors.
Using explainability analysis, we devise payloads that
alter the file structure and evade detection. Our attack
achieves evasion rates as high as 100%, and the
generated samples are transferable to a prominent IoT
malware detector [8] with a 95.15% success rate. Our
main contributions are summarized below.

1) We introduce a stealthy binary-level,
functionality-preserving adversarial attack on
structural IoT malware detection. Unique to our
work, we apply SHAP and LIME explainability
techniques to guide the generation of targeted
payloads to alter the malware binary and evade
detection.

2) We build a hybrid target detector comprising
structural and opcode features, achieving a de-
tection rate of up to 99.11%. We conducted
extensive experiments to assess and compare its
robustness against structural and opcode-based
detectors.

3) We devise unique payloads that evade detection
at a low attack cost and generate transferable
adversarial samples that evade a prominent IoT
malware detector [8] with a 95.15% success rate.
We make our code publicly available online.

RELATED WORK
Machine Learning (ML) Malware Detection

ML technologies have been widely applied in mal-
ware detection in IoT devices and edge consumer elec-
tronics [7], [34], [35]. In ML malware detection, fea-
tures can be categorized into binary-based, signature-
based, and structure-based. Binary-based features rep-
resent executables as byte sequences [5], [6] or even
as grayscale images [7], [34].

Signature-based features are extracted from exe-
cutables through disassembly. Typically, binary files
are reverse-engineered and analyzed to extract features
such as opcodes, API/System Calls, Header informa-
tion, and Strings [5], [35].

Structure-based features graphically depict the re-
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Table 1. Comparison of the Proposed Method with Related Works
Method Attack Level Platform Detector Detector Feature Manipulation

GEA [3],SGEA [14] Code, Binary IoT CNN CFG Benign Subgraph Injection
AndroidHIV [16] Code Android MaMaDroid [24], Drebin [25] API, CFG , Permission Code Injection
HRAT [17] Code Windows MaMaDroid [24], MalScan [26] API, FCG Block Size, Modify graph, Add Subgraph
Zhang et al. [27] Binary Windows GCN, DGCNN CFG, Opcode Block Size, Opcode
Chen et al. [28] Binary IoT RF CFG, Opcode Block Size, Opcode, Add Subgraph
Yuste et al. [29], Aryal et al. [30] Binary Windows MalCov [6] Byte-sequence Code Cave Injections
Lucas et al. [19] Binary Windows MalCov [6] Byte-sequence Binary Diversification Methods
Li et al. [20] Binary Windows XGBoost Opcode NOPs Insertion
DeepMal [21] Binary Windows General Image Payload Injection
Rosenberg [31] Binary Windows EMBER [32] Multiple PE Binary Features Explainable-based Manipulations
Demetrio et al. [33] Binary Windows MalConv [6] Byte-sequence Explainable-based Header Modifications
Our proposed Binary IoT RF, SVM, XGBoost, DNN CFG, Opcode Explainable-based Block, Subgraph, Opcode Injections

lationships among various aspects of the binary. These
features include Function Call Graphs (FCG) [10],
[11], Control Flow Graphs (CFG) [8], Printable String
(PSI) graphs [22] and opcode graphs [5]. Integrating
signature-based and structure-based features improves
the detailed representation of binary semantics [9].

Adversarial Attacks in Malware Detection
Adversarial attacks pose a significant threat to

inadequately secured IoT devices used in smart homes,
smart healthcare, smart entertainment, and other con-
sumer applications [1], [15], [36]. A particularly insid-
ious variant of these attacks targets malware detection
systems, either by deceiving them into misclassifying
malware as benign files [3] or by poisoning the data
used to train the detectors [12]. While much of the
existing research focuses on adversarial attacks against
malware detection on Windows and Android [16],
[17], [19], some of these attacks can also be adapted
to detection systems deployed in consumer electronics
within the IoT ecosystem.

Adversarial malware detection attacks can be cat-
egorized as code-level and binary-level attacks. In
the case of code-level attacks, Abusnaina et al. [3]
propose the GEA attack against detectors using CFG
features by injecting benign subgraphs into malware
files. In a subsequent work named SGEA, Abusnaina
et al. [14] reduce the graph size needed to evade the
target detector. Chen et al. [16] modify the source code
of Android APK files and repackage them, altering
their CFG structure. Zhao et al. [17] propose a code-
level attack against FCG detectors by manipulating
function calls.

When source code is absent, crafted binary snip-
pets can be inserted directly into the binary [21].
Optimized via gradient methods, these payloads have
been used to evade byte-based detectors like Mal-
Conv [6]. For stealthier attacks, payloads can be
generated to replace existing binary instructions with
semantic equivalents. For example, Lucas et al. [19]
employ instruction substitution and binary diversifica-

tion techniques to evade detection while preserving
original malware functionality.

Some previous works have focused on inserting
payloads targeting specific features on which the tar-
get detector is trained. For instance, Li et al. [20]
replace malicious opcode sequences with semantic
NOPs. Similarly, Chen et al. [28] insert executable
opcode sequences to obfuscate CFG structure. Zhang
et al. [27] attack GNN models using reinforcement
learning, injecting semantic NOPs into specific nodes.

Closely related works include those by Yuste et
al. [29] and Aryal et al. [30], which focus on the
injection of code caves into PE binaries to mislead
byte-based detectors such as MalConv [6]. Specifically,
Yuste et al. [29] dynamically introduce empty blocks
(caves) into the malware binary. They then apply a
Genetic Algorithm to select suitable content to place
in these code caves, thereby evading detection. In a
similar vein, Aryal et al. [30] introduce intra-section
code caves into Windows PE malware files. They
use gradient-based approaches to generate adversarial
samples, which are then injected into the created code
caves to evade detection.

Adversarial Attacks via Explainable AI (XIA)
Explainable AI (XAI) algorithms, such as SHapley

Additive exPlanations (SHAP) [37] and Local Inter-
pretable Model-Agnostic Explanations (LIME) [38],
have been leveraged for targeted adversarial at-
tacks [31]. They are used to rank feature importance,
and the attacks are orchestrated to manipulate the most
influential features.

Demetrio et al. [33] used integrated gradients to
evade a binary-based malware detector by targeting
influential blocks. Li et al. [20] applied SHAP to an
opcode-based detector, replacing the most malicious
opcode sequence with semantic NOPs. Rosenberg et
al. [31] employed diverse explainability approaches to
evaluate feature importance in models, demonstrating
that targeting the influential features is practical and
efficient.
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Table 2. Features and categories of features used by malware

detectors

Structural Opcode
Nodes, Edges,
Out_degree,
In_degree,
Density,
Closeness_cent,
Betweenness_cent,
Connected_com,
Diameter, Radius,
Avg_block

Total_trans,
Total_cal,
Total_ctl,
Avg_trans,
Avg_cal, Avg_ctl,
Avg_block_size

Unlike existing studies, our methodology leverages
the injection of payloads into the existing empty re-
gions of the binary, combined with explainable AI
techniques. This approach is tested on real-world IoT
datasets, including widespread botnets like Mirai, fre-
quently detected in consumer IoT devices.

SYSTEM MODEL
In this section, we detail the components (a), (b),

(c), and (d) of Figure 1. We elaborate on how we utilize
the feature importance analysis results to construct
effective payloads to bypass the target detector.

Threat Model
Our attack scenario assumes the adversary has

white-box and black-box access to the target detector.
In the white-box setting, the adversary can access
all detector details, including the model’s architecture
and parameters. The black-box setting, however, limits
the adversary to the model’s prediction result. If the
adversary only has black-box access, they can execute
the attack by training a substitute model and attempting
to transfer the attack to the target detector.

The goal is to modify malware samples while
preserving their original functionality until they are
misclassified as benignware by the target detector.
Each sample x ∈ X is associated with a label y ∈ Y ,
where Y = {0, 1}. Using reverse engineering, we
transform each sample into an n-dimensional feature
vector z ∈ Z , which is then used to train the target
detector.

Feature Importance Analysis
In our quest to develop a robust malware detector,

we employ three categories of features to train three
distinct detectors: Structure-based, opcode-based, and
a combination of both (subsequently referred to as
structure, opcode, and hybrid detectors). To enhance

the applicability of our attack, the hybrid model is
utilized as the target model for our explainability
analysis. Table 2 presents the features used to train
the detectors.

As shown in Figure 1 (a), after training the target
detector, we use explainability analysis techniques to
assess the feature importance. We utilize SHAP [37]
to discern the correlation between features and model
predictions. Additionally, we apply the LIME analysis
method [38] for a detailed examination of the feature
influence range of individual malicious samples.

• SHAP Analysis

Figure 2 shows the SHAP value distribution of
all features, allowing intuitive analysis of detector
predictions. Each row represents the distribution
of all samples in a specific feature, with earlier
ranked features having more influence. The color
intensity of each point, representing a test dataset
sample, indicates the corresponding SHAP value.
We selected the top 9 influential features for
payload generation, including five structure-based
(Avg_block, Closeness_cent, Density,

Out_Degree, Nodes) and four opcode-based
(Avg_block_size, Avg_cal, Total_ctl,

Total_trans) features. We analyzed the influence
of feature values on prediction results, considering
the difference between malicious and benign samples.
For example, high values of features such as
Avg_block, Avg_block_size, Avg_cal,

Total_ctl, Nodes, are positively correlated
with the prediction of maliciousness. Therefore, our
strategy is to decrease these values to mislead the
detector. For features such as Closeness_cent,
Density, Out_degree, and Total_trans,
lower values are positively correlated with the
prediction of maliciousness; thus, our strategy is to
increase these values to evade detection.

• LIME Analysis

Following SHAP analysis, we employ the LIME
explainability analysis [38] to probe the degree of
influence that features have on malware predictions.
This investigation reveals that certain ranges of fea-
ture values are associated with heightened predic-
tions of maliciousness. For instance, if the range of
values for Avg_block_size that contribute to a
sample being classified as malicious is denoted as
Avg_block_size > 14.00, it suggests that re-
ducing the Avg_block_size value to below 14.00
could lead the detector to incorrectly classify the
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Figure 1. The Proposed Framework

Figure 2. The SHAP value distribution of testing
dataset features when label = malicious (RF)

sample as benign.

Payload Generation
Finally, we construct our influential payloads based

on the analysis results (i.e., part (b) in Figure 1). Our
attack strategy comprises four payloads: two structure-
based and two opcode-based.

Structure-based payloads primarily alter the flag
register value via the compare instructions and control
the execution path with the conditional instructions.
This allows the injected payloads to be parsed as part
of the CFG without affecting the file functionality. A

jump instruction returns to the original program entry
point. The two payloads aimed at altering the structure
of the malware binaries are discussed below.

1) Linked Node
By injecting the opcode sequence into the bi-
nary file’s executable segment, we form the
CFG subgraph structure shown in Figure 3(a).
We link the subgraph directly to the origi-
nal CFG’s entry point to perturb the struc-
tural and opcode features. Specifically, this mod-
ification reduces the values of influential fea-
tures like Avg_block_size, Avg_block,
and Avg_cal, thereby increasing the probability
of a malware sample being classified as benign.

2) Block Cycle
Using different conditional instructions, we form
a CFG subgraph structure as shown in Figure 3(b)
and inject it at the entry point of the original
CFG. Injecting numerous CFG blocks simulta-
neously saves bytes needed for the entire pay-
load required to mislead the detector. Specifically,
this injection increases the number of blocks in
the CFG, thereby reducing the values of fea-
tures such as Avg_block_size, Avg_block
and Avg_cal while increasing the value of
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(a) Linked Node (b) Block Cycle

Figure 3. The structure-based payload

density thus reducing the malicious probability
of a sample.

Opcode-based payloads, consisting of semantic
NOPs, impact the opcode-based detector despite not
affecting the CFG structure. We categorize general
semantic NOPs into two types:

1) Invalid Transform
While preserving the original executable func-
tionality, we inject Invalid Transform instruc-
tions such as mov rax, rax, push rax, and
pop rax. This payload type influences fea-
tures such as Total_trans, Avg_trans, and
Avg_block_size. For instance, this pertur-
bation increases the values of Total_trans

and Avg_trans features, which, according to
our analysis, will lead the detector to classify a
malware sample as benign.

2) Invalid Arithmetic
Additionally, we insert invalid arithmetic
instructions such as and rax, rax, sub rax,
-0x10 and add rax, 0x10, which alter
features like Total_cal, Avg_cal and
Avg_block_size. For example, injecting
invalid arithmetic instructions that form an
additional block will not only increase the value
of Total_cal but will also increase the number
of blocks, which in turn will reduce Avg_cal

and Avg_block_size, thereby increasing the
probability of a malware sample being classified
as benign.

Payload Injection
To insert the payload into the CFG structure with-

out disrupting the file’s functionality, we carefully
select the injection site. We analyze the ELF file
structure, identify unused space in the LOAD segment,
typically at the end, and inject the payload sequences.
We replace the program’s original entry point with our
payload, ensuring our instructions execute first, then
redirect the payload’s end back to the original entry
point to maintain functionality. If the available space
is insufficient, we modify the Program Header Table
and Section Header Table to expand it.

Payload Injection Optimization Algorithm

Algorithm 1: IoT Structural Attack
Input : Target Detector D, original malware

example x, payload set P , maximum
stagnation N , constraints t

Output: Selected sequence S, adversarial
example x̃

1 x̃← x, S ← ϕ, step← 1, z̃ ← τ (x̃)
2 while D(z̃) > 0.5 and step ≤ N do
3 Probabilitymin ← D(z̃)
4 for p ∈ P do
5 pseq ←

GeneratePayloadSeq(pi, step)

6 Stmp ← S ∪ pseq
7 x̃tmp ← InjectPayload(x̃, Stmp)

8 z̃tmp ← τ (x̃tmp)

9 r ← RandomizeFunction(t)

10 if D(z̃tmp) ≤ Probabilitymin + r

then
11 Probabilitymin ← D(z̃tmp)

12 S′ ← Stmp

13 end
14 end
15 x̃tmp ← InjectPayload(x, S′)

16 if d(x, x̃tmp) ≤ ∆ then
17 step←

DynamicAdjust(step,D(z̃))
18 x̃← InjectPayload(x, S′)

19 S ← S′

20 z̃ ← τ (x̃)
21 end
22 t← t− 1

23 end
24 return S, x̃
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Table 3. Detection Results. “Acc.”, “Prec.”, “Rec.”, and “F1” stand for Accuracy, Precision, Recall, and F1-Score, respectively.

RF SVM XGBoost DNN

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
Structure 97.06 97.04 97.01 97.05 96.06 96.05 96.03 96.07 96.06 95.9 95.8 95.82 95.43 95.30 95.22 95.36
Opcode 98.84 98.42 98.37 98.85 97.83 97.01 96.82 97.78 98.72 98.02 97.96 98.62 95.17 94.86 94.75 95.11
Hybrid 98.97 98.42 98.06 98.88 98.47 98.11 97.98 98.63 99.11 99.01 98.96 99.04 98.35 98.12 98.01 98.33

The malware detector takes sample features z as
input and outputs a confidence score. If the score
exceeds 0.5, the sample is classified as malicious;
otherwise, it is benign. We aim to alter a malicious
sample x̃ to mislead the detector using its feature z̃,
aiming for a confidence level below 0.5. The attack
framework is depicted in Figure 1(d).

Our attack employs a greedy strategy specially
tailored to our problem. In each iteration, we inject
four payloads into the malicious samples sequentially
and observe the model’s predictions. We select the
payload sequence that reduces confidence the most
and initiate the next iteration. In the selection phase,
we introduce a randomized parameter to allow the
algorithm to accept suboptimal solutions and increase
the likelihood of escaping local minima.

We monitor the model’s confidence changes and
note that the confidence decrease for most samples
experiences periods of stagnation. Consequently, we
introduce a function to dynamically adjust the number
of steps, reducing the iteration count required to gen-
erate adversarial examples. Specifically, this function
intensifies the rate of payload injection in a given it-
eration when the detector’s confidence level stagnates.

This reduction in iterations decreases the time
required for generating adversarial examples and the
number of queries made to the model, effectively
saving costs and making adversarial attacks more
imperceptible. We repeat this process until the model
classifies the target sample as benign or we reach our
repetition limit. The algorithm used in our approach is
shown in Algorithm 1.

EVALUATION
Dataset

To evaluate the proposed framework, we compiled
a dataset of 14,320 IoT samples from various CPU
architectures, including ARM, x86, x86-64, MIPS,
PowerPC, and SPARC. These samples were verified
by different antivirus vendors via VirusTotal [39]. The
final classification, based on a majority vote from
VirusTotal’s report, yielded 8156 benign and 6164 ma-
licious instances, with Mirai malware being prevalent.

The dataset was split into 80% for training and 20%
for testing.

Target Model and Experiment Setting
With the dataset prepared, we use the Angr [40]

framework to extract control flow graphs (CFGs) from
the binaries. We then employ NetworkX [41] to extract
structural features from these CFGs. Additionally, we
extract opcode features from the disassembled binaries.
Specifically, still using the Angr framework, we extract
the assembly instructions from the ELF binaries and
categorize them into three types: "Transform Instruc-
tions," which include data movement instructions such
as mov, push, and pop; "Arithmetic Instructions,"
which include instructions such as add, sub, and
div; and "Control Instructions," which include control
flow instructions such as jmp, je, and call. We then
compute the total number of each type of instruction
and the average number of each type per block to
form our opcode features. These features are then
combined with the structural features to create the
feature set presented in Table 2. Next, we construct
three detectors based on our feature categories: a
structure-based detector, an opcode-based detector, and
a hybrid detector that integrates both feature types.
These models are tested with various machine learning
algorithms, including Random Forest (RF), Support
Vector Machine (SVM), eXtreme Gradient Boosting
(XGBoost), and Deep Neural Networks (DNN). All
detectors achieve an accuracy score of over 95%, with
the hybrid detector surpassing 98% (see Table 3). Our
preliminary analysis demonstrates that the hybrid de-
tector is more robust than the other detectors; therefore,
we selected it to generate our adversarial examples.

Analysis of Structural Attack
As depicted in Figure 1 (d), we execute a struc-

tural attack by inserting payloads into the malware
binaries. Our results are compared with those of Chen
et al. [28], who did not use explainability. We em-
ploy a similar approach, but ours is more influential
as it incorporates explainability methods. It’s worth
noting that Chen et al. [28] utilized a Hill Climbing

xxx/xxx YYYY 7

This article has been accepted for publication in IEEE Consumer Electronics Magazine. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCE.2024.3482700

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Taiwan Univ of Science and Technology. Downloaded on November 11,2024 at 08:30:48 UTC from IEEE Xplore.  Restrictions apply. 



Adversarial Attacks on Consumer Electronics

Table 4. Comparing the performance of Chen et al. [28]’s Hill-Climbing (HC) and our Optimization Algorithm (OA) attack

strategies under the same constraints(∆).

Detector Feature ∆ Method Detector Evasion Rate(%) Append Size(%) Iterations ∆ Evasion Rate(%) Append Size(%) Iterations

Structure

A = 40

Chen et al. [28]

RF 97.03 10.60 45.79

I = 50

62.38 4.46 21.50
SVM 92.08 8.17 40.43 66.34 5.53 25.61

XGBoost 87.13 9.35 49.4 54.46 4.29 21.16
DNN 91.09 14.9 73.92 38.61 8.06 37.16

Our + HC

RF 98.02 6.69 28.49 87.13 4.90 21.24
SVM 100.00 7.75 48.66 69.31 7.13 24.71

XGBoost 99.01 7.92 47.4 66.34 7.47 21.72
DNN 99.01 10.11 83.89 39.60 7.4 35.76

Our + OA

RF 99.01 8.58 13.51 100.00 9.02 13.62
SVM 100.00 8.09 13.11 100.00 8.09 13.11

XGBoost 99.01 8.38 11.56 100.00 8.76 11.64
DNN 99.01 9.69 16.69 100.00 10.18 16.78

Hybrid

Chen et al. [28]

RF 80.20 9.81 51.40 41.58 5.36 27.78
SVM 100.00 12.08 63.65 40.59 10.1 40.00

XGBoost 80.20 11.44 58.61 23.76 8.41 29.23
DNN 78.22 13.02 76.85 23.76 7.16 23.12

Our + HC

RF 97.03 10.40 50.24 71.29 5.20 27.49
SVM 100.00 9.58 62.18 42.57 8.77 38.92

XGBoost 98.02 10.73 92.38 24.75 7.46 26.55
DNN 96.04 13.05 118.85 24.75 12.74 22.38

Our + OA

RF 98.02 9.49 15.28 100.00 10.48 15.74
SVM 100.00 9.71 21.95 100.00 9.71 21.95

XGBoost 99.01 9.81 15.24 100.00 10.37 15.33
DNN 96.04 12.39 23.30 98.02 13.36 23.48

optimization algorithm, while we opted for a greed-
based optimization algorithm. We evaluate the mod-
els’ robustness using 101 randomly selected malicious
samples.

We introduce a threshold ∆ to limit the attack
cost in terms of append size and maximum number of
iterations. We set ∆ to A = 40 and I = 50, restricting
the append size to 40% of the original file size and the
maximum number of iterations to 50, respectively. Our
method achieves a minimum evasion rate of 98.02%

on the structural detector and above 96.04% on the
hybrid detector, as detailed in Table 4.

The attack by Chen et al. [28] performs well on
structure-based RF and hybrid SVM models, but the
evasion rate decreases to around 90% for the other
models and to 78% for the hybrid detector. When the
iteration limit is 50, the evasion rate of Chen et al. [28]
approach falls below 70% for both structure-based and
hybrid detectors.

Using the Hill Climbing (HC) algorithm, our ap-
proach achieves evasion rates of up to 87% on the RF
structure-based model and 71% on the hybrid detector.
By substituting HC with our optimization algorithm,
the evasion rate improves to over 98% under the same
constraints.

We evaluated our attack under various constraints
and mapped the correlation between append size, itera-
tion count, and evasion rate (Figure 4). Our Optimiza-
tion Algorithm (OA) outperforms the Hill-Climbing
(HC) algorithm, achieving an evasion rate of 51.49%
over HC’s 47.52% under a 5% append size limit. At
a 90% evasion rate, our method requires roughly 25%
append size, less than Chen et al. [28]’s requirement
of over 50%. Our OA is also more iteration-efficient,

needing only 24 iterations to exceed a 90% evasion rate
on hybrid XGBoost, versus the 250 iterations needed
by HC.

Transferability of Adversarial Examples
We evaluated our attack’s effectiveness by testing

the transferability of the generated adversarial exam-
ples. Samples generated by one ML model success-
fully evaded other models trained on the same feature
set (See Figure 6). The structure-based model was
more susceptible to our attack, with over 50% transfer
rate between similar models. The DNN algorithm
proved to be the most robust compared to other ML
models in all the detectors, as shown in Fig 6.

We further evaluated the transferability of the gen-
erated adversarial samples on a leading IoT malware
detector [8] that uses different structural features. The
effectiveness of the samples was confirmed, achieving
a high evasion rate of up to 95% with a minimal attack
cost. The comparison of evasion rates is presented in
Table 5.

Comparison with Similar Studies
We compared the adversarial examples generated

by our approach with those from the GEA [3] and
SGEA [14] frameworks. Both approaches, like ours,
inject benign graphs into the CFGs of malware files
to deceive CFG-based IoT malware detectors. We
computed the additional CFG nodes introduced by
each method. The results show that GEA requires
1, 075 nodes for 100% evasion, while SGEA and our
approach require only 6.8 and 26.83, respectively. Al-
though our method outperforms GEA, SGEA remains
superior in terms of node count efficiency.
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Figure 4. Comparison of the relationship between Evasion Rate and Append Size

Figure 5. Comparison of the relationship between Evasion Rate and Iterations

Figure 6. Transfer rate of adversarial examples on different model
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Table 5. The adversarial attack uses our payload set with the Optimization Algorithm (OA) on different structure-based

detectors.

Method Detector Feature Detector Evasion Rate(%) Append Size(%) Iterations

Our + OA Alasmary et al. [8] RF 95.15 4.69 9.26
Hybrid Detector RF 100.00 9.02 13.62

Discussion and Recommendations
The experimental results demonstrate the inherent

vulnerabilities of AI-based malware detection systems
to adversarial attacks. Subtle input perturbations can
trick detectors into misclassifying malicious files as
benign, posing a serious threat to IoT networks, where
undetected malware can cause significant damage. Our
attack, though limited to structure-based IoT malware
detectors, generates adversarial samples that can fool
detectors trained on different features [8].

To enhance the robustness of AI-based malware
detectors and mitigate these vulnerabilities, we pro-
pose several practical recommendations. Firstly, cre-
ating adversarial-aware detection models through ad-
versarial training [18], [29] can help anticipate and
counter potential attacks. Secondly, we recommend us-
ing anomaly detection systems and input preprocessing
to identify unusual input patterns, which may signal
adversarial attacks, and to assist in removing these
perturbations. Thirdly, we emphasize the importance of
robustness evaluation and testing of these AI detection
systems to enhance their resilience against attacks,
including continuous improvement to adapt to evolving
threats.

Our experiments reveal that some machine learning
models, such as Deep Neural Networks (DNN), are
more resilient than others, such as Random Forest
(RF). Therefore, we propose the use of ensemble meth-
ods, combining multiple models and utilizing majority
voting to enhance resilience. Furthermore, we advocate
for using robust features in model training that are less
susceptible to manipulation by adversarial attacks or
require significant effort to alter. We also recommend
implementing adaptive defensive mechanisms, such as
online learning and continuous monitoring, to dynam-
ically adapt to new types of attacks.

Lastly, we stress the need to incorporate human
expertise in the process, as human experts can verify
and analyze suspicious cases flagged by AI systems,
providing an additional layer of security. While some
solutions are cost-effective and suitable for lightweight
IoT malware detection, others are resource-intensive
and complex, making them less feasible for resource-

constrained IoT devices.

CONCLUSION
We proposed a practical, imperceptible adversarial

attack against structure-based malware detectors. Us-
ing ML explainability methods, we identified the most
impactful features of the target detector and created
four payload categories to alter these features. We
applied a refined greedy algorithm to inject payloads
into the empty spaces of malware binaries, success-
fully evading detection. Notably, the samples generated
were transferable to a prominent graph-based IoT
malware detector trained on different features. Our
study highlights the vulnerabilities of ML-based IoT
malware detectors, underscoring the need for continu-
ous defense efforts.

One limitation of our approach is its inability to
handle obfuscated malware. Obfuscation can alter the
structural features used in training our target detector
and, in some cases, hinder the extraction of control
flow graphs, which are central to our method. In the
future, we plan to integrate both dynamic and static
analysis to develop a more robust detector capable of
handling obfuscated malware.
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